
Emulator II RS422 Specification October 30th 1985

E-mu Systems Inc. Enhanced by The Emulator Archive Page 1

The Emulator II RS422 Computer Interface

Introduction

The Emulator ll RS-422 computer interface is a powerful low-level interface to the
Internal data structures of the Emulator Il (Ell) microprocessor. While the interface was
specifically intended to work with the Apple Macintosh computer, it will work with any
computer that has a asynchronous serial port capable of being externally clocked at 500
kBaud.

The Emulator II uses a 500-kBaud asynchronous serial interface to exchange data with
external computers. The Ell provides a 500 kHz clock.

A MIDI system exclusive command can be used to put the Emulator under control of the
external computer, but otherwise MIDI is not used in this interface.

A low-overhead packet oriented communications protocol with block parity and
retransmission of corrupted blocks is used.

The protocol allows any block of memory in the Ell to be read or written, and a set of
subroutines can be remotely executed to perform various Ell functions. The Ell is the
slave in all external computer transactions.

The addresses of Ell voices in sound data memory are stored in a Voice Table, which
resides at a fixed address. The detailed RS422 interface specification will contain the
memory map of the important Ell data structures, allowing an experienced programmer
to access sound memory and control data structures.

It is assumed that the potential user of this document has a great deal of knowledge of
microprocessors, assembly language programming, hexadecimal arithmetic, serial
interface programming, and some knowledge of the Emulator II. It is not intended to be
used by people new to computers. Unless otherwise stated, this document is provided
“as is”, with the understanding that E-mu will not provide any support to the user in
programming or consultation in using it (you’re on your own!).

This document is still under development, and will include more specific details later.
This original specification provides information about the physical interface, and about
the software communication protocol. Further information about the Emulator II internal
data structures will be provided later.

Emulator II RS422 Specification October 30th 1985

E-mu Systems Inc. Enhanced by The Emulator Archive Page 2

Level 0 Physical Hardware Specification

Although the Emulator II uses a 25 pin DB25 connector for its computer interface, which
does not comply with the physical specification for RS422, signal levels are compatible
with RS422. The pin out is given in table 1. Hardware handshaking is not used on the E-
II. The EII MlDl port is shared with the RS422 port. Sending or receiving data on the
RS422 port at MlDl Baud rate (31.25 k) is equivalent to sending or receiving data on the
MIDI port.

This interface requires the Emulator II to have RS-422 capability. If the serial number of
the Emulator is below about 900, then it probably has the Revision 0 digital board,
requiring a small retrofit board to provide the Ell with RS-422. The digital board is the
large board on the right inside of the Emulator II. The revision level is on the lower right
hand corner of the Digital board. The retrofit board can be obtained from E-mu Systems
or from an E-mu service center.

Pin # Signal Name Signal Voltage EII Input/Output

2 -Receive Data Nominal ± 4V
Absolute maximum ±15V

EII Input

3 -Transmit Data 0 to 4 V

EII Output

7 Signal Ground Ground

9 500 kHz Clock -1.5 V to +2.5 V

Ell Output

10 +Receive Data Nominal ± 4V
Absolute maximum ±15V

Ell Input

11 +Transmit Data 0 to 4 V

Ell Output

Table 1: RS422 Connector Pin-out

The Emulator Il is compatible with normal RS232. RS232 is defined to use voltage
levels of ± 12 V, while the E-Il outputs are 0 to +4 V. Zero volts is defined to default to a
negative (marking) state in RS232, and a signal above 3 Volts at the receiver should
produce a high (space) condition. In practice, RS232 works well with the Ell. The
transmit and receive data are differential, but unipolar, while the clock line is bipolar but
not differential. This arrangement is due to the RS422 signals available on the
Macintosh. The clock can be converted to a single-ended clock line by adding a jumper
across capacitor C162 on the Rev 1 digital board or capacitor C1 the RS-422 retrofit
board.

Standard RS232 drivers will not, however, clock at 500kBaud. In order to communicate
at 500kBaud, the user’s computer must have RS422 or equivalent drivers.

Emulator II RS422 Specification October 30th 1985

E-m

Level 1 Serial Data Specification

Serial data are transmitted at 500,000 bits per second (Baud), asynchronous, with 8 bits
per character, 1 stop bit, 1 start bit, Odd Parity. The 2651 USART used in the EII is
clocked at the X1 clock rate.

Level 2 Software Command Protocol

The Emulator II can be put into Mac Mode (external computer control) either by using
special function 16 or by a MIDI system exclusive command (MlDl communications are
of course at 31.25 kBaud). Once under control of the external computer (now at
500kBaud), the Ell executes a simple command loop that insures synchronization
between the Ell and the external computer. This command loop is shown in block
diagram form in Figure 2.

The MIDI System Exclusive command follows the standard format for MIDI system
exclusive;

byte 1 (enter system exclusive mode) FOh,
byte 2 (E-mu Manufacturer’s ID. #) 17h,
byte 3 (enter Mac Mode command) 00h,
byte 4 (end of system exclusive mode) F7h.

The basic goal of the command loop is to send or receive a command string consisting
of four bytes; the format is shown in figure 3. The command string always starts with a
single byte command, a two-byte address, and a single byte count or length
argument. The command string must always be four bytes long, even if the
arguments (2nd and 4th bytes) are dummy arguments. The commands available
are listed in table 2. Protocol bytes are listed in table 3.

Command Byte Address LSB

Address MSB Length
Byte 0 Byte1 Byte2 Byte3

Command String Format
u Systems Inc. Enhanced by The Emulator Archive Page 3

Emulator II RS422 Specification October 30th 1985

E-mu Systems Inc. Enhanced by The Emulator Archive Page 4

Command
Byte (Hex)

Command Comments

F9 Call subroutine Used to call a subroutine;
First byte of Command String Address is
subroutine number.

FA Input from I/O port
output

First byte of Command String Address is input
port address.
Command String Length is the actual value.

FB Output to I/O port First byte of Command String Address is output
port address.
Command String Length is the actual value
output.

FC lnit Initialize command sequence

FD Exit Exit external computer control

FE Send Packet Used to read data from The EII.
Command string address is destination in Ell
for data.

FF Receive Packet Used to load data into the EII from the external
computer.
Command String Address is source of data.

Table 2: Commands

Protocol Byte Name

Protocol Byte (ASCII)

ACK ‘A’
NAK ‘N’
RAK ‘R’

Init ACK ‘I’
STX ‘S'

Table 3: External Computer Interface Protocol Bytes

Subroutines can be called from the external computer interface. The subroutine number
is passed as the first byte of the command string address. Parameters are passed
through a register save area, which is loaded into the actual registers when the
subroutine is executed.

	Command
	Call subroutine

